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Motivation
• We want high level API: models more than 

vertices
• We would like a cross-platform system
• We also want low-level features that are 

*not* cross platform
• High performance requires out-of-API 

knowledge
• Less programmer involvement in shader 

selection

Target Hardware

• Sony PS2, Microsoft Xbox, Nintendo GC, 
Microsoft DX8 PC

• Common Characteristics:
– CPU and GPU connected by narrow bus
– GPU is programmable
– Texture combining is a post-GPU step

(our system does not address pixel to vertex shader 
feedback)

• Avoid read/compute/write/submit-to-GPU
– Avoid touching data twice

Display Lists and Scene Graphs

• OpenGL and DirectX display lists can be 
efficient, but must be constructed by a 
program
– More efficient because they save many 

function calls for subsequent submissions. 
• Iris Performer forces direct-mode 

geometry submission in exchange for 
hardware state change reduction.

Shader Compilers

• Might produce cross-platform shaders 
• Address specification and construction of 

efficient shaders
• Do not address the layout of rendering 

data 
– No automatic system to connect model data 

to shaders
• Do not address offline data transforms

Let’s Compile Art
• Encode out-of-API hardware performance 

issues in the Compiler
– Cache sizes
– Cost of state changes
– Memory bandwidth

• Be aware of user constructs, such as 
models

• Perform offline transforms
• Generate code to hook model data to 

shaders
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Properties of Game Art
• Fixed topology 
• Come in atomic bundles: Models

– Multiple shaders per model
• Game AI controls many attributes

– Skeleton pose
– Morph weighting
– Shader variables

Mapping Art to Shaders
• Three kinds of shader inputs

– Source art that is opaque
• Coordinates, normals, colours

– Source art modified by the user at runtime
• Some coordinates, colours
• Often default parameters (lighting, …)
• State information (shading modes, textures)

– Runtime values used for control
• Tranformation matrices, matrix palettes

• How do we link art to shaders?

The Render Method

• Extend a shader to include:
– Input specifications 
– Offline transformations

• Make it re-usable with different art
• Use the Render Method both in runtime 

and in the Compiler
• Unfortunately platform specific

Render Method – Inputs
• Lists data elements required from the 

source art 
• Inputs are platform independent

Rendermethod gouraud {
inputs {

Coordinate4 Coordinates;
ColourARGB Colour;
Char GeometryName;
int nVerts;

}…
}

Render Method – Variables

Rendermethod gouraud {…
variables {
extern volatile Matrix Xf = View::Xf;
Coord3Colour coords[nVerts] 

= Pack3(Coordinates, Colours);
export modifiable State 

GeometryName::state;
noupload RenderBuffer output[nVerts];
}…
}

• Transforms input data to shader data
Render Method – Computations

Rendermethod gouraud {…
Computations {
XCProject(nVerts, coords, Xf, output);
XGKick(GeometryName::state);
XGKick(output);  
}
}

• Computations are macro expanded to 
make shaders
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Compiler Front End
• We compile from an art package agnostic 

intermediate form
• FE breaks models into per-render method 

classes
• Vertices may be reordered for cache 

optimization (tri-strips, meshes, etc)
• Classes are broken to fit hardware and 

rendermethod constraints (eg, skinning 
palettes), into streams of packets

Packet Compiler

• For each packet stream
– Reorder to minimize state changes

• Model draw is atomic

• Per packet
– Execute data transforms
– Generate platform specific data structures
– Generate platform specific byte code

Code Generation

• Generate a byte-code program to render 
each packet
– Byte code used to exploit ICache coherence
– Program attaches data elements to shader
– Instructions relate to accumulating hardware 

data structures and setting state

Global Optimizations

• Optimizations encode much platform 
specific out-of-API knowledge
– Remove redundant state settings
– Remove redundant instructions
– Remove redundant data transfers
– Merge DMA chains

• After Optimization, Emit.
– We generate ELF files to facilitate linkage

Results

• Easy to port
– 3 Man-months to a new platform
– Games port in 1-2 man-months

• Render Methods have been used for many 
custom features
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Results II

26.3/36.210.3/10.915.9/20.924.1/46.1PC
NA/NA7.2/NA10.3/NA18.7/NANGC

63.9/93.814.2/30.322.4/43.447.2/91.4Xbox
25.2/31.88.5/11.510.9/14.717.0/22.6PS2
GouraudSkinnedLitGouraudPlatform

Millions of Polygons per sec/Millions of Vertices per sec
Figures date from November 2001

Future Directions

• Runtime/Just in time compilation
• Ease of use for dynamic topology
• Incremental compilation for rapid art 

iteration
• Cross-platform Render Methods

Video Not Available
• 2 Mins


